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ABSTRACT
Free-living assessment and remote monitoring is important for
healthcare researchers. Moving research beyond the laboratory
provides habitual environments for remote assessment that allows
research to remain agile even when facing uncontrollable external
factors e.g., the SARS-COV-2 pandemic. Emergent technologies
have the potential to make this form of assessment feasible by
providing accessible and affordable mechanisms for conducting
free-living research. This paper presents findings from a study
that was halted due to the pandemic, but this work highlighted
a series of challenges that may present themselves to researchers
conducting similar work. By transparently reporting the challenges
and solutions rather than just methods, it is hoped that the lessons
learned from this study could provide researchers with greater
awareness in future studies.
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1 BACKGROUND
Daily patient management and personalised health interventions
are important areas of investigation. Clinic/lab-based assessments
with state-of-the-art equipment provide accurate data under su-
pervised/idyllic conditions (e.g. good lighting, even terrain). Yet,
these environments can be a limitation as they not representative
of everyday living conditions and those being studied are conscious
of being observed [6]. Free-living assessment can be useful here
as it provides a range of habitual challenges that people normally
face [5] to increase measurement variability that provide greater
insights to better assess health conditions. Yet, moving beyond the
lab presents unique challenges to researchers that can often be
under reported - especially when piloting projects [12].

Research-grademonitoring equipment used in laboratoriesmakes
free-living monitoring challenging due to its high cost and (often)
uni-modal configuration [8]. Longitudinal deployment is also often
unfeasible for free-living assessment, because the complexity of
the equipment either requires researcher intervention for setup or
is disruptive to daily living [1]. Deployment in free living condi-
tions also lacks environmental context that would be available to
researchers in supervised laboratory conditions.

Emergent, disruptive, and accessible sensor technologies are re-
ducing the costs associated with remote sensor deployment [3],
which is increasing feasibility of remote free-living assessment.
These technologies have a range of applications for remote health-
care monitoring with wearable health technologies (WHT) and
passive environmental monitoring. For example, Fitbit can provide
affordable and direct mechanisms for free-living monitoring that
have potential to provide new digital biomarkers in research [7].
Whereas, environmental sensors can be used to monitor Indoor
Environmental Quality (IEQ) (the measurement of Air Quality and
Thermal/Acoustic/Visual Comfort), with potential to provide envi-
ronmental context to free-living research. Poor IEQ can impact
general health [10], so augmenting those data with information
from WHT can provide a wider health context [2]. However, multi-
modal data capture from many different devices can create unique
challenges even in laboratory settings, these can be exacerbated
during remote deployment. This depends on devices having remote
access capabilities, but also ensuring environments have suitable
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communication/connectivity infrastructures. Moreover, many sys-
tems/devices are tied to closed eco-systems that can be challenging
to utilise within research [4].

Here, we present challenges that were identified in a pilot study
which aimed to gather data from remotely deployed WHT and
IEQ devices via an Internet of Things (IoT) platform. Lessons were
learned from the setup and mobilisation of the project that could be
useful to future researchers aiming to conduct remote monitoring
with off-the-shelf devices.

2 STUDY SETUP
The purpose of the pilot study was to capture data from a variety
of remote devices in order to explore possible links between WHT
outcomes and IEQ. The primary aim for the pilot was to examine
collection protocols while aggregating data from different off-the-
shelf devices within a single/n-of-1 (female, 44 years) home and
office setting. N-of-1 methods were chosen as they can inform
many types of research, but are useful in exploratory research
and pilot studies for monitoring individuals longitudinally to gain
a wider context on health outcomes and patterns of behaviour,
when compared to group-based studies [11]. Ethical consent was
granted by Northumbria Research Ethics committee (REF: 17141)
and the participant gave written informed consent before the study
commenced.

2.1 Technologies and outcomes
The health and environmental outcomes, and the devices used to
capture them, are listed in Table 1. WHT outcomes were measured
using a Fitbit Charge 3 and IEQ outcomes were measured using a
Netatmo Healthy Home Coach and a Foobot Air Quality Monitor.
Each device was configured to use the participant’s smart-phone
(Apple iPhone 11) where data were synced periodically to the propri-
etary mobile apps. Data were then accessible from a cloud account
and could be accessed via the web platform, integration apps (e.g.,
Alexa and If This Then That, IFTTT) and proprietary APIs.

Table 1: Outcomes measured with remote sensors

Netatmo Foobot Fitbit

Temperature ✓ ✓ -
Humidity ✓ ✓ -
CO2 ✓ - -
eCO2 - ✓ -
PM2.5 - ✓ -
VOCs - ✓ -
Outdoor Pollution - ✓ -
Noise ✓ - -
Steps - - ✓
Calories - - ✓
Distance Travelled - - ✓
Heart Rate - - ✓

2.2 Study setting
IEQ sensors were placed in the participant’s home and on their
desk within their office in a multi-occupant office on a university

campus. The studywas initially designed to run through spring 2020
for 8 weeks. The study was mobilised on 18 March 2020, but was
subsequently halted on 23 March due to COVID-19 UK lockdown
restrictions.

3 TAMING THEWILD: LESSONS LEARNED
Irrespective of the project being halted due to COVID-19, a series of
challenges had to be addressed within the setup and mobilisation of
technology that could be useful to future researchers. Pilot projects
are often only reported, when successful, as a means to support
future work, but the outcomes (whether positive or negative) can
be of benefit to future researchers [12]. This section outlines what
steps were taken to mitigate and/or overcome the impact of these
challenges.

3.1 Integrator Apps: Limited data access
Consumer grade IoT devices are typically marketed to highlight a
multitude of options to connect data. Cross-platform mobile sup-
port, web-based access from a browser, and tight integration with
smart home platforms (e.g., Amazon Alexa) make these devices
appealing. However, those data can often lack detail suitable for
robust health assessment. IFTTT provides a mechanism to integrate
multiple platforms and an example use case includes taking data
from Fitbit and logging it to Google Sheets. However, data from Fit-
bit that is exposed to IFTTT is either captured as a daily summary of
the previous day’s activities or triggered when outcomes, e.g. sleep,
steps, calories, are above/below a threshold. Thus, it is not possible
to capture intra-day data from these services or make requests for
data during a specific time period. Furthermore, consumer activ-
ity monitors utilising accelerometers (the same sensors used by
clinicians to detect sensitive spatio-temporal gait characteristics
[5]) will rarely output raw (sample level) data. Instead, data are
processed and output as e.g., step count.

3.2 Proprietary APIs: Restrictions and
regulations

Data captured from proprietary hardware are often stored in the
manufacturers closed eco-system. Although these eco-systems may
provide access to backlogs, resulting data are often collated to e.g.,
hourly aggregations [4]. Data access varies by device, manufac-
turer, data type and is also dependant on the level of authorisation.
Data are often synced to a mobile device, web-based platform or
both but there is often a requirement for software development to
create apps that can interface with the proprietary API and provide
authenticated requests for data.

IEQ data from the Netatmo and Foobot devices were accessible
via an API key setup within the associated account for each device.
Data were collected using Azure Function Apps (developed in .NET
Core version 3.1) which made periodic authenticated calls to the
respective APIs (Figure 1). An Azure function app was also used to
obtain data from the participant’s Fitbit, but an intermediary API
(developed in PHP using the Simple API framework) was used to
provide an authentication layer that the Function App could use to
fetch data.

Azure Function apps communicated with the proprietary APIs.
Initially these were developed in Python, but it became apparent
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Figure 1: System Architecture for extracting data from pro-
prietary APIs using Azure Function Apps.

when hosting the app that Azure can only host Python-based Func-
tion Apps on Linux. However, Linux hosted apps require an addi-
tional service plan to be set up, incurring additional costs. Therefore,
apps were subsequently developed in .NET Core and hosted on a
Windows server.

3.3 Data Security: Authentication and
protection

Under General Data Protection Regulation (GDPR), Fitbit provides
access to historical data via the Web API only. To access intra-
day data there was a requirement to make an additional ethical
application to Fitbit outlining the purpose of the data collection, as
well as indicate how the data would be collected, used, stored and
managed. Within this process it became apparent that using Azure
Function Apps to directly communicate with the Fitbit API was not
appropriate. Fitbit authentication protocol requires an application
to be developed with a specific callback that is protected by a Secure
Sockets Layer (SSL). That enables Fitbit users to securely connect
their accounts and authorise the application to access specific health
outcomes.

Callbacks are not available in Azure Function Apps and require
additional web services to provide an interface to users. Therefore,
Function Apps were unsuitable for connecting directly to Fitbit.
Consequently, an intermediary API was developed in PHP using the
Simple API framework. The API had a single endpoint that could
be called by the Azure Function App to provide an authenticated
layer required to access Fitbit data.

3.4 Communication and connectivity
IEQ monitoring devices were initially brought to a university cam-
pus for testing, with the intention of connecting the devices to
the university’s WiFi network. However, IoT devices were config-
ured to accept WiFi credentials in the form of a Network Name
(SSID) and Password pair and the university used Enterprise WiFi
Protected Access 2 (WPA2-Enterprise). This meant that it was not
possible to connect the IEQ monitoring devices to the internet via
the university network.

The use of 4G SIM card routers overcame these challenges, but
they also provided additional protection regarding ethics and gov-
ernance. Since the intention was to deploy IoT devices both on a

university campus and in the participant’s home, the sand-boxed en-
vironment provided a suitable mitigation against the security risks
involved with using IoT devices, which are becoming increasingly
targeted by malware [9].

3.5 Remote deployment: Access restrictions
Prior to the UK lockdown there were established procedures within
the university to prohibit unnecessary travel or meetings. Conse-
quently, sensors were given to the participant, having been pre-
configured prior to deployment. This meant the setup and mobili-
sation of the study had to be done remotely. However, shortly after
deployment, the SIM cards became unresponsive and had to be
be reconfigured remotely, by assisting the participant over video
conferencing. This was problematic due to the type of SIM card
that was used.

Researchers conducting short-term/pilot projects may be in-
clined to choose a pay-as-you-go (PAYG) SIM card so that they
are not constrained with contracts that extend beyond the study
period. Unlike contracted SIM cards, which typically have accounts
associated to them, PAYG SIM cards are not always designed for use
in 4G routers. For example, a TESCO Mobile PAYG SIM card was
initially selected, but this had to be switched to another SIM as there
was no online access. All configuration of the SIM was done via
SMS, which made remote deployment unfeasible. Despite not hav-
ing a contract, GiffGaff provided online access to the SIM account,
which allowed data consumption and renewals to be monitored
and managed.

4 DISCUSSION
Although SARS-COV-2 had a major impact on the length of this
pilot, some challenges were identified relating to the setup and mo-
bilisation of off-the-shelf, free-living/remote monitoring equipment.
Here, solutions to overcome those challenges were presented.

When establishing in-the-wild research projects, it can be useful
to understand the pragmatic technical issues once equipment is
deployed. Failure to do so can delay research, increased costs, or
in-the-field modifications that could increase patient and researcher
burden. Here, many challenges occurred during the setup phase.
This meant contingencies (e.g., use of 4G routers) and alternative
solutions (e.g., use of Azure Function Apps and intermediary APIs)
could be developed before mobilisation. The challenges identified
(e.g., additional ethics from FitBit and procurement of 4G routers)
delayed the project many weeks and had these challenges been
foreseen, it may have been possible to conduct the pilot a number
of weeks prior to lockdown.

Transparency surrounding project limitations is vital. Nuanced
technical challenges may present themselves throughout projects,
yet these same challenges could have a greater impact on other
researchers with different skill sets. Here, we present notable chal-
lenges in a similar technology deployment scenario. It should be
noted that lack of control and potential need for remote data access
can present challenges specific to individual projects. Proprietary
systems or black-boxed eco-systems can exacerbate challenges and
often present a need for bespoke solutions requiring software de-
velopment. For example, details pertaining to the interfacing with
an API or development of bespoke software integration.
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5 CONCLUSION
Consumer grade monitoring equipment is becoming more accessi-
ble and is permeating into multiple disciplines of research including
healthcare. Many devices are targeted towards the IoT market and
integration with cloud-based services are commonplace. Integra-
tion services such as Amazon Alexa, Google Home, or IFTTT can
provide access to proprietary platforms, but integration is limited
due to consumer focus and are often of little use to researchers.
There is a need for software development when creating interac-
tions with proprietary APIs. This may result in a skill requirement
that is not readily available in healthcare teams. However, this
creates an opportunity for researchers to create bespoke implemen-
tations that are able to collect data from multiple data sources for
holistic remote monitoring. To do this, it is important for teams
to recognise and address the multidisciplinary nature of emergent
technologies within healthcare research, as doing so could allow
research to remain agile and exploit emergent emergent technolo-
gies. It is also important to have complete transparency around
the technical development (and challenges involved) to inform the
needs of future research teams.
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