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ABSTRACT
People with profound intellectual and multiple disabilities (PIMD)
are hard to understand because they are not capable of symbolic
communication. Artificial intelligence can play a key role in rec-
ognizing behavior patterns with which they express themselves. It
can thus assist new caregivers that are not familiar with a PIMD
person. Within the INSENSION project, we developed a behavior
pattern recognition approach that classifies a person’s inner states
and communication attempts based on his/her facial expressions,
gestures, vocalizations, and physiological signals.
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1 INTRODUCTION
People with profound intellectual and multiple disabilities (PIMD)
have cognitive and physical disabilities as well as great difficultly
communicating. They typically do not use symbolic communica-
tion, but communicate with facial expressions, vocalizations and
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body language that is different for each person with PIMD. As a
consequence, their communication is hard to understand and even
skilled caregivers need time to learn their communication patterns.

Several artificial intelligence methods have been developed for
recognizing a person’s body movements, facial expressions, ges-
tures, etc. from video. However, basic features such as facial expres-
sions and body movements are not enough since complex relations
between them might exist. Additional challenges are that these
features may have a different meaning for each person and are not
used consistently.

To discover complex communication relations between basic fea-
tures we developed a decision support system (DSS) that recognizes
behavior patterns related to person-specific inner states and com-
munication attempts. DSS processes facial expressions, gestures,
vocalizations, and physiological data to classify inner states and
communication attempts, and combines the obtained classifications
with context data such as objects and other persons in the room in
order to obtain contextualized decisions. The developed approach
is part of the INSENSION project [2].

We present the implementation of the DSS for two persons with
PIMD. The sensing system was installed in the kindergarten they at-
tend and used during their regular activities with caregivers (kinder-
garten personnel). The persons with PIMD were not aware of our
experiment, and the caregivers were focusing on their task, so the
experiment closely resembled real-life usage of the system.

2 BEHAVIOR PATTERN RECOGNITION
APPROACH

The behavior pattern recognition approach consists of preprocess-
ing the input data into recognized gestures, facial expressions, vo-
calizations, and physiological states, building decision models that
classify inner states and communication attempts, combining the
decisions with context data, and updating decision models based
on information from caregivers. The model-updating procedure is
based on the active learning approach and is not described in this
paper, while details on INSENSION’s facial expression recognizer,
gesture recognizer, physiological state recognizer, and vocalization
recognizer can be found in [3, 5].
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Figure 1: Contextualized behavior pattern recognition and
decision support system architecture.

The architecture of the decision support system is shown in
Figure 1. At the bottom of the figure are two sets of inputs. The first
set is related to the target person only and uses sensor readings
(from cameras, microphones and the Empatica E4 physiological
monitoring wristband) to extract the person’s non-symbolic be-
haviour signals. The second set uses sensor readings (IoT system,
cameras and microphones) to extract important information about
the person’s context. Additional context information about other
people in the vicinity is derived from the identity recognizer.

The input data are first preprocessed by collecting messages from
the recognizers related to a time interval of interest (set to 10 s) and
extracting features characterizing the target person’s behavior and
context. These features are assembled into an instance, the basic
unit of information for decision making. Such instances are fed into
decision models, which output the person’s inner state (pleasure,
displeasure and neutral) and communication attempt (comment,
demand, protest and none). Since the decision models can never be
made perfect, and people can change with time, we incorporated
active learning into the system. This means that in case a caregiver
notices a wrong decision by the system, he/she can correct it, so
the decision models are retrained using the new information. The
context arriving in the DSS is merged with the recognized inner
states and communication attempts into contextualized decisions.
These are finally used by assistive applications to take appropriate
actions (e.g., communicate the target person’s inner state to the
caregivers, or turn media player on/off).

2.1 Dataset and Data Preprocessing
Within the INSENSION project, data from two PIMD persons were
collected and annotated with inner state and communication at-
tempt. The study was approved by the Bioethical Committee at the
Poznan University of Medical Sciences (approval number 10/21)
following international standards.

Basic statistics of the obtained 10-second instances are shown
in Tables 1–2. These data are quite imbalanced with respect to
the classes. This is mostly because the objective of caregivers is

Table 1: Instances Labelled with Inner States

Inner state All instances Instances with
physiological data

Person 1 Person 2 Person 1 Person 2

Neutral 561 307 291 307
Pleasure 102 154 18 154
Displeasure 82 27

Table 2: Instances Labelled with Communications Attempts

Communication
attempt

All instances Instances with
physiological data

Person 1 Person 2 Person 1 Person 2

None 648 433 319 433
Comment 79 9 13 9
Demand 18 14 4 14
Protest 5 5

to prevent displeasure, protest and to some degree demand, and it
would not be ethical to elicit these inner states and communication
attempts on purpose. However, imbalanced data is a problem for
machine learning, because machine-learning algorithms build mod-
els that favor better represented classes. We tackled this problem
with two class balancing methods.
Random oversampling is a simple method that randomly selects
instances of the smaller classes and generates copies of them until
all classes are balanced. Balancing was always done on training
data only, so it could not happen that one copy of an instance would
be in the training data and another in the test data.
Synthetic Minority Oversampling TEchnique (SMOTE) [1]
generates new synthetic instances, and tends to perform better than
random oversampling. It first randomly selects an instance from
the minority class, then randomly selects a number of instances
from among its five nearest neighbours (the number depending on
the amount of oversampling required), and finally generates new
instances as a linear combination of the original instances and each
of the selected neighbours.

2.2 Feature Extraction
The features used for machine learning belong to three groups: (a)
facial expressions and gestures; (b) vocalizations; and (c) physio-
logical signals (see Figure 1). For each basic feature, we computed
several derived features that were then used in our instances:

• AVG is the average of all values of a basic feature in the
messages received within a (10-second) window.

• AVG>0 is the average of all the values that are greater than
0 (within a window).

• HIST is the histogram of values within a window; for each
basic feature we obtain 10 histogram features.

• HISTD is the histogram density of values within a window;
for each basic feature we obtain 10 histogram density fea-
tures.
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In addition to single derived features, the following combinations
of derived features were considered: (a) AVG + HIST, (b) AVG +
HISTD, (c) AVG > 0 + HIST, and (d) AVG > 0 + HISTD.

Note that physiological signals were not present in all data since
Empatica was not used in all recordings. We tackled this issue by
imputing physiological features with Decision tree regressor model
when genuine physiological signals were not present. More pre-
cisely, one model was built for each physiological feature indepen-
dently. To build the model, we used facial, gesture and vocalization
data as well as annotated classes as features, while true values of
the physiological features were used as target values.

2.3 Training Machine-Learning Models
Decision models were built with machine-learning algorithms and
combined into ensemble models. Basic models were built with six
diverse algorithms implemented in the Scikit-learn library [4]:

• Linear discriminant analysis (LDA)
• Gaussian naive Bayes (NB)
• Support vector machine (SVM)
• K-nearest neighbours (KNN)
• Decision tree (DT)
• Random forest (RF)

Among these models, RF typically performed well. However,
RF is also sensitive to its hyperparameters. To further improve
the accuracy, we tuned the following hyperparameters (evaluated
values are in brackets):

• n_estimators [10, 20, 50, 100]
• max_features [0.1, 0.3, 0.6, 0.9]
• max_depth [2, 4, 6]
• min_samples_leaf [1, 2, 4]
• bootstrap [true, false]

Hyperparameter tuning was performed with grid search, strat-
ified group k-fold cross-validation, and balanced accuracy. The
tuned version of RF is hereafter referred to as RFO.

We implemented an additional model called the Expert sys-
tem (ES). It consists of sets of rules that are derived from rule
templates defined by the experts, i.e., caregivers. Each rule template
has several conditions and the class into which it classifies. Each
condition is defined with an attribute, i.e., the behaviour signal that
is observed, the threshold that has to be met to trigger the condition,
and the condition weight. In addition, a weight and a threshold are
stored for each class value.

While the basic rules, i.e., rule templates were based on expert
knowledge, we tuned the rules’ parameters based on the annotated
recordings. More precisely, the following parameter values were
tuned: (a) class weights (for each class), (b) class thresholds (for each
class), and (c) condition thresholds (for each condition in each rule).
Parameter tuning was performed with the Differential Evolution
algorithm [6].

2.4 Decision Fusion with Ensembles
The decisions of basic models were fused using an ensemble ap-
proach. More precisely, ensembles were built for each person and
class independently by combining the best machine learning and

Table 3: Ensembles

Name Compulsory Number of Voting
models best models type

b3 / 3 basic
b3 / 3 weighted
b2 / 2 weighted
rfo_b2 RFO 2 basic
rfo_b2_p RFO 2 weighted
rfo_b1_p RFO 1 weighted
es_b2 ES 2 basic
es_b2_p ES 2 weighted
es_b1_p ES 1 weighted
rfo_es_b1 RFO, ES 1 basic
rfo_es_b1_p RFO, ES 1 weighted
rfo_es_p RFO, ES 0 weighted

expert models, and using various sets of features with and without
physiological data.

For each of the tested settings, the six machine-learning models
in addition to ES and RFO were built (eight models in total). ES
was preferred because it requires less data to be prepared for a
new person, and RFO because it usually performed best. These
models were sorted according to the balanced accuracies. Based
on this, several ensembles were created as shown in Table 3. Each
ensemble consists of compulsory models and additional models
selected based on the balanced accuracies (b1 and b2 means best one
or twomodels). The voting type was either basic (one model has one
vote) or weighted (votes are weighted by the models’ confidence).

3 EVALUATION OF PATTERN RECOGNITION
APPROACH

To thoroughly test the possible configurations of the contextualized
behaviour pattern recognition, we compared the accuracy of all
combinations of:

• three class balancing methods (none, random oversampling
and SMOTE)

• eight features sets (four single derived features and four
combinations)

• with or without physiological signals
• 20 different models (six basic machine learning models, ES,
RFO, and the 12 ensembles)

All this was done independently for inner states and communication
attempts, and for persons 1 and 2, for a total of 1,280 experiments.

To evaluate the performance of the decision models, we used five-
fold cross-validation: we split the data in five subsets, trainedmodels
on four and tested on the final one, and repeated this procedure five
times with a different subset used for testing each time. We made
sure that each example of inner state or communication attempt was
only in one of the subsets, where one example means a continuous
interval of a given state/attempt — this way we prevented the
models from overfitting to specifics of a given situation.

Since our classes are imbalanced, we used balanced accuracy as
the evaluationmetric. Balanced accuracy is the average recall across
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Table 4: Maximum balanced accuracy [%] of the different
machine-learning models per person and class.

Person 1 Person 1 Person 2 Person 2
inner comm. inner comm.
state attempt state attempt

ES 48.4 33.3 60.8 35.0
LDA 56.3 73.3 63.5 62.3
NB 53.5 58.0 64.8 44.8
SVM 60.2 57.0 67.1 48.8
KNN 57.9 51.1 59.1 44.8
DT 54.0 56.9 59.5 59.0
RF 49.3 52.4 62.5 35.0
RFO 59.8 70.5 65.5 60.8
b2_p 60.6 76.4 67.7 55.4
b3 62.1 72.5 69.3 53.6
b3_p 58.2 75.3 67.2 56.0
es_b1_p 59.3 74.6 68.0 0.0
es_b2 62.4 72.2 69.3 50.6
es_b2_p 59.2 76.4 66.9 0.0
rfo_b1_p 60.6 76.4 68.0 56.4
rfo_b2 62.1 72.5 67.3 53.6
rfo_b2_p 58.2 75.3 66.2 56.0
rfo_es_p 59.3 71.1 64.9 29.6
rfo_es_b1 60.6 72.2 67.0 50.6
rfo_es_b1_p 59.0 76.4 66.9 56.4

all the classes, and recall is the fraction of instances belonging to a
class that are in fact recognized as such. Note that the balancing
methods were used just on the training and not test data.

Table 4 shows the maximum balanced accuracies for individual
persons and classes. Except in the last column, ensembles performed
best. These best-performing ensembles include expert system as
one of the models, i.e., es_b2 is the best model for person 1, inner
state; es_b2_p is the best model for person 1, comm. attempt; and
es_b2 is the best model for person 2, inner state. This suggests that
it is beneficial to combine experts’ domain knowledge in the form
of expert system with artificial intelligence approaches that learn
only from sensor data. On the other hand, among the single models,
LDA and SVM performed best, closely followed by RFO.

Additional analysis was done regarding the various sets of fea-
tures (see Table 5). For inner state, most feature sets performed
similarly, although the more complex ones had a slight advantage.
For communication attempt, the simpler feature sets proved better,
probably because we had less training data, and so the models could
not take advantage of a large number of features.

4 CONCLUSION
The behavior pattern recognition proved to be a challenging task.
Since it processes data from recognizers (facial, gesture, etc.) that
are themselves not perfect, it is affected by all their problems. In
addition, the behaviours are sometimes difficult to annotate even
for the caregivers, so there may be noise in the labels. The dataset
is also limited, especially with respect to displeasure, since the
caregivers try to avoid it. Furthermore, sometimes the person in the

Table 5:Maximumbalanced accuracy [%] of the different fea-
ture sets per person and class.

Person 1 Person 1 Person 2 Person 2
inner comm. inner comm.
state attempt state attempt

AVG 58.4 76.4 66.8 44.8
AVG > 0 59.8 69.2 65.9 46.2
HIST 59.0 57.4 67.0 49.4
HISTD 59.3 57.0 68.0 62.3
AVG + HIST 60.2 57.6 67.1 45.3
AVG + HISTD 60.3 60.6 69.3 49.0
AVG > 0 + HIST 62.1 59.2 67.1 42.3
AVG > 0 + HISTD 62.4 57.8 68.5 48.8

video is not detected, or the gestures and facial expressions are not
recognized correctly. This may be due to the inherent difficulty of
the task, or due to occlusion, as our experiment took place during
normal care activities, so the caregivers moved around the persons
with PIMD and placed them in diverse positions. In addition, not all
behaviors that are informative for the caregivers can be recognized
by the recognizers. Even without the previous problems, a person’s
behaviour is not always consistent; consequently, some behaviours
are difficult to recognize even with correct inputs.

The main task in our future work will more extensive evaluation
of the proposed approach during INSENSION pilots. If time allows,
we will collect additional data for the two persons in order to train
the models on larger set of real-life situations. Since additional
people will be involved in pilots, we will collect their data and build
additional person-specific models.
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